

Co-op 2017 Final Presentation by Hao Tang

Mars 2020 RSM & Chassis

352C – Mechanical Structures and Articulation, Presented by Hao Tang, Jet Propulsion Laboratory, California Institute of Technology, 08/17/2017

Agenda

- About me
- Recap of Remote Sensing Mast (RSM) Work
- Tidbits here and there
- Chassis Structural and Thermal Bracket Analysis

Me!

Michigan Marching Band

Plasma Electrodynamics CubeSat

Hiking!

Mars 2020 Remote Sensing Mast

Context

- Flight instruments are arriving late in testing campaign schedule
- Project needs stand-ins (mass models) for system practical tests
- My task: create the MEDA mass models
- Testing
 - TVAC (individual mass models)
 - Centrifuge, sine, modal (rover with RSM on it)

Summary of MEDA Mass Models

Right = flight Left = mass model

- All margins were above 2
- Mass & CG all within 5% flight
- Low cost manufacturability
- Within NTE boundaries

Flight

Mass Models

Wind Sensor 2 – Mass Model Only

				•
WS2	Mass Model	Actual	Difference	% Error
Х	96.5 mm	97.2 mm	0.7 mm	0.72%
Υ	35.2 mm	34.7 mm	0.5 mm	1.44%
Z	24.8 mm	24.2 mm	0.6 mm	2.48%
Mass	711.39 g	695.78 g	15.61 g	2.24 %

WS2 Deployable Overview

Tidbits here and there

- Fiber Optic Cable (FOC) GSE for Pebble Test
- HEPA Filter Leak Test
- RPFA Housing Epoxy Test (EA 9392 vs Arathane 5753)

Pebbles on Rover top deck from MSL

Fiber Optic Cable GSE Pebble Test

 Need to make observations and test integrity of FOC during EDL

Erosion Rig (Small Particles/Sand)

Sample Size Max 10"x10"

Gas Gun (Large Particles)

• Sample size 3"x5"

HEPA Filter Leak Test – Chassis and RSM Filters

- Using same filters for M2020 & want to make sure MSL HEPA filters still functional
 - Baseline measurement of # of particles in room
 - Cleaning
 - Actual Test
 - <=.03% Baseline = Pass
- After passing, part set up for another test to model failure modes of filter due to pebble test
- Both passed leak tests and will be sent for pebble tests
- Another leak test after pebble test to see if any changes/leak

Rover Pyro Firing Assembly (RPFA) Epoxy Test

Context

- RPFA needs to be kept warm
- Bend relief holes need to be covered
- Wanted to test different adhesives covering holes

Quick Facts

- Epoxy done at room temp
- Quick and dirty
- Strength of epoxy
 - Cracking or fracture
- Next test at colder & hotter temperature

Mars 2020 Chassis Brackets

Requirements

- Brackets holding cables are structurally and thermally affected
 - Structurally, needs margin of 2 and 1.6 for ultimate tensile and yield, respectively
 - 100g MAC loads
 - Thermally, temperature differential at least 80 °C
 - High differential = not losing heat quickly
 - 1 Watt of power through cable
- If not meeting margins, design change is necessary
 - Trying to keep material 6061, which is cheaper and easier to machine
 - Not always a complex change

Structural Analysis Example & Pictures

Other Brackets I did

- Beg Pyro FJ
- E-Bridle
- E-BridleHeli FJ
- CBH
- Telecom
- Front Hazcam
- EDL Downlook
- Cable Saddles

Thermal Analysis Example & Pictures

- Cables inside Rover from hot components need to maintain heat
- Thermal requirement was at least 80 °C/W

Applied 1 W through

Lessons Learned

- RSM Mass Models
 - Design for Manufacturability
- Testing
 - Finding unique solutions given hard constraints
 - Epoxy and Adhesive properties
- Chassis Brackets
 - Better understanding of MAC loads
 - Better understanding of setting up structural analysis

Special Thanks To...

- Zach Ousnamer
- Preston Ohta
- Jeff Carlson
- Jon Hamel
- Lemil Cordero
- Scott Perkins
- Eddie Ketsiri
- Emma Bradford

- Jen Knight
- Yuki Salinas
- Lori Siraishi
- Diane Tan

Questions?

Wisdom Tree hike @ Griffith Park

JPL!

Matching Mass & Center of Gravity

General Requirements

- 1. Parts must have
 - 1. Masses +10%/-5% within flight model values
 - 2. CG +/-10% within flight model values
- 2. Structurally sound design
- 3. Low-Cost Manufacturability
- 4. Be within NTE boundaries
- 5. Match flight hardware tolerance at interfaces
 - 1. Stay as close to flight boundary as possible

Wind Sensor 1

WS1	Mass Model	Actual	Difference	% Difference
Х	71.0 mm	70.9 mm	0.1 mm	0.14%
Υ	-33.0 mm	-33.0 mm	0 mm	0%
Z	-2.29 mm	-2.4 mm	0.11 mm	4.58%
Mass	362 g	360 g	2 g	0.56%

Thermal Infrared Sensor

TIRS	Mass Model	Actual	Difference	% Error
Х	-32.938 mm	-32.341 mm	0.597 mm	1.85%
Υ	26.883 mm	27.021 mm	0.138 mm	0.51%
Z	23.341 mm	23.391 mm	0.050 mm	0.21%
Mass	117 g	110 g	7 g	6.36%

Air Temperature Sensor (Fiberglass)

ATS	Mass Model	Actual	Difference	% Error
Х	7.24 mm	7.24 mm	0 mm	0%
Υ	-24.20 mm	-24.20 mm	0 mm	0%
Z	20.37 mm	19.78 mm	0.59 mm	2.98%
Mass	59 g	56 g	3 g	5.36%

Humidity Sensor

	_			
HS	Mass Model	Actual	Difference	% Error
Х	22.74 mm	22.66 mm	0.08 mm	0.35%
Υ	17.50 mm	17.93 mm	0.43 mm	2.40%
Z	6.67 mm	7.05 mm	0.38 mm	5.39%
Mass	61 g	60 g	1 g	1.67%

Simple Static

 Only needed Boom to have similar mass and CG as flight

Wind Sensor 2 – Boom Only

WS2	Boom Mass Model	Boom Actual	Difference	% Error
Х	88.2 mm	89.3 mm	1.1 mm	1.23%
Y	1.31 mm	1.44 mm	0.13 mm	9.02%
Z	05 mm	0 mm	0.05 mm	N/A
Mass	213.28 g	197.78 g	15.5 g	7.83%

Wind Sensor 2 – Static Only

WS2	Static Mass Model	Static Actual	Difference	% Error
Х	83.9 mm	83.1 mm	0.8 mm	0.96%
Y	31.5 mm	31.4 mm	0.1 mm	0.32%
Z	22.6 mm	22.5 mm	0.1 mm	0.44%
Mass	501 g	498 g	3 g	0.60%

Hinge Area Overview

Custom Shaft

- Threaded shaft for aesthetics
- Guarantees threads won't negatively impact rotation

Locking Mechanism

- Extremely difficult to machine if the Boom just one piece
- Created two pieces
 - Boom cap needed to combine with Boom body to match CG & mass without risk of rotation

Deployed Wind Sensor 2

Simulation

Methods: FEA Acceleration Loading

$$A_{x} = T_{x} + R_{y}D_{z} + R_{z}D_{y}$$

$$A_{y} = T_{y} + R_{z}D_{x} + R_{x}D_{z}$$

$$A_{z} = T_{z} + R_{x}D_{y} + R_{y}D_{x}$$

 A_i = Resolved acceleration along i direction T_i = Translational acceleration in i direction R_i = Rotation acceleration about i direction D_i = Moment arm length along i direction

- Each resolved acceleration is the combination of a translational and two orthogonal rotational contributions.
- Distance vector from CG to geometric center of bolt pattern used as moment arm for rotational contributions.
- Magnitudes used for all values.

Wind Sensor 1

Yield Margin: 7.2

Ultimate Margin: 6.1

Accelerations:

X - 5.18 gs

Y - 5.27 gs

Z - 15.63 gs

Max Stress: 14.13 Mpa 2.05 ksi

WS1.sim1 A1: WS1COMBO Result

Stress - Element-Nodal, Averaged, Von-Mises

Formula Used: sqrt((STRE)^2+(STRE_1)^2+(STRE_2)^2)

Load Case 1, Static Step 1

Thermal Infrared Sensor

Yield Margin: 40.7

Ultimate Margin: 35.4

Accelerations:

X - 4.4996 gs

Y - 4.9012 gs

Z - 15.1092 gs

TIRS2 A1: TIRSCOMBO Result

Air Temperature Sensor Yield Margin: 22.8

Ultimate Margin: 19.5

X - 4.109 gs

Y - 4.658 gs

Z - 15.219 gs

Humidity Sensor

Accelerations:

X - 3.9327 gs

Y - 4.385 gs

Z - 15.2391 gs

Wind Sensor 2 Yield Margin: 3.0

Ultimate Margin: 2.6

Accelerations:

X - 4.7744 gs

Y - 5.4856 gs

Z - 16.0356 gs

Max Stress: 22.03 MPa

3.20 ksi

WS2femredo.sim1 A1: WS2COMBO Result

Stress - Element-Nodal, Averaged, Von-Mises

Load Case 1, Static Step 1